Design, construction, and calibration of a three-axis, high-frequency magnetic probe (B-dot probe) as a diagnostic for exploding plasmas.

نویسندگان

  • E T Everson
  • P Pribyl
  • C G Constantin
  • A Zylstra
  • D Schaeffer
  • N L Kugland
  • C Niemann
چکیده

A three-axis, 2.5 mm overall diameter differential magnetic probe (also known as B-dot probe) is discussed in detail from its design and construction to its calibration and use as diagnostic of fast transient effects in exploding plasmas. A design and construction method is presented as a means to reduce stray pickup, eliminate electrostatic pickup, reduce physical size, and increase magnetic signals while maintaining a high bandwidth. The probe's frequency response is measured in detail from 10 kHz to 50 MHz using the presented calibration method and compared to theory. The effect of the probe's self-induction as a first order correction in frequency, O(omega), on experimental signals and magnetic field calculations is discussed. The probe's viability as a diagnostic is demonstrated by measuring the magnetic field compression and diamagnetism of a sub-Alfvenic (approximately 500 km/s, M(A) approximately 0.36) flow created from the explosion of a high-density energetic laser plasma through a cooler, low-density, magnetized ambient plasma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multichannel magnetic probe system for analysing magnetic fluctuations in helical axis plasmas.

The need to understand the structure of magnetic fluctuations in H-1NF heliac [S. Hamberger et al., Fusion Technol. 17, 123 (1990)] plasmas has motivated the installation of a sixteen former, tri-axis helical magnetic probe Mirnov array (HMA). The new array complements two existing poloidal Mirnov arrays by providing polarisation information, higher frequency response, and improved toroidal res...

متن کامل

Magnetic Calibration of Three-Axis Strapdown Magnetometers for Applications in Mems Attitude-Heading Reference Systems

In a strapdown magnetic compass, heading angle is estimated using the Earth's magnetic field measured by Three-Axis Magnetometers (TAM). However, due to several inevitable errors in the magnetic system, such as sensitivity errors, non-orthogonal and misalignment errors, hard iron and soft iron errors, measurement noises and local magnetic fields, there are large error between the magnetometers'...

متن کامل

Scanning hall probe microscopy technique for investigation of magnetic properties

Scanning Hall Probe Microscopy (SHPM) is a scanning probe microscopy technique developed to observe and image magnetic fields locally. This method is based on application of the Hall Effect, supplied by a micro hall probe attached to the end of cantilever as a sensor.  SHPM provides direct quantitative information on the magnetic state of a material and can also image magnetic induction under a...

متن کامل

Scanning hall probe microscopy technique for investigation of magnetic properties

Scanning Hall Probe Microscopy (SHPM) is a scanning probe microscopy technique developed to observe and image magnetic fields locally. This method is based on application of the Hall Effect, supplied by a micro hall probe attached to the end of cantilever as a sensor.  SHPM provides direct quantitative information on the magnetic state of a material and can also image magnetic induction under a...

متن کامل

Dynamic Electromagnetic Field Measurements of Clustered Hall Thrusters

In an effort to verify the existence of and study the characteristics of the dynamic magnetic fields generated by supplying inner and outer coil Hall thruster electromagnets with wide bandwidth (DC to 200 kHz) currents, B-dot probe experiments have been performed. Several different locations were mapped and all three components of the magnetic field were recorded. A Helmholtz coil is used for h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 80 11  شماره 

صفحات  -

تاریخ انتشار 2009